
Identifying and Correcting Java Programming Errors
for Introductory Computer Science Students

Maria Hristova, Ananya Misra, Megan Rutter,

and Rebecca Mercuri, Ph.D.
Mathematics and Computer Science Department

Bryn Mawr College
101 N. Merion Avenue

Bryn Mawr, PA 19010-2899
{rmercuri, amisra}@brynmawr.edu

{maria.hristova, megan.rutter}@alumnae.brynmawr.edu

Abstract
Programming in Java can be a daunting task for introductory
students, one that is only compounded by the cryptic compiler
error messages they see when they first start to write actual
code. This article details a project conducted by faculty and
advanced students in the creation of an educational tool for Java
programming, called Expresso. This paper discusses some
existing programming tools, explains their drawbacks, and
describes why Expresso is different. We also include a detailed
list of typical errors made by novice programmers, used in the
construction of the Expresso tool.

Categories & Subject Descriptors

D.2.5 [Software Engineering]: Coding Tools and Techniques --
Object-Oriented Programming.
K.3.2 [Computers and Education]: Computer and Information
Science Education.
General Terms
Languages, Design, Human Factors.
Keywords
Java, CS1, programming, syntax, semantics, logic.

1 Premise of Study
In recent years, a significant number of colleges have converted
their introductory computer science courses from C/C++ to Java.
This transition has brought attention to many programming
errors and misconceptions that exist across this particular family
of languages or are Java specific. For beginning programmers,
it is often hard to comprehend linguistic intricacies inherent in
the design of languages like Java, leading to a range of common
difficulties during the coding process.

COPYRIGHT
Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists
requires prior specific permission and/or a fee.

SIGCSE ’03, February 19-23, 2003, Reno, Nevada, USA.
Copyright 2003 ACM 1-58113-648-X/03/0002...$5.00

Despite extensive coverage of these types of errors in textbooks
and lectures, we have observed that these still persist when
students actually write programs. Though certain compilers
may flag some of these mistakes, often the Java error messages
are so cryptic to students that they have a hard time simply
identifying their errors, let alone making corrections.
In order to investigate this problem, we formed a collaborative
project between computer science faculty and students who had
previously served as Java teaching assistants. The study was
divided into three phases as follows:
Phase 1: Identification of Errors
We conducted a survey of college professors, teaching
assistants, and students in Computer Science to identify relevant
Java programming mistakes. Combining the survey results with
our own experiences as teaching assistants, we obtained a final
target list of errors and misconceptions.
Phase 2: Choice of Implementation
Next, we decided how to implement the error-detection advisory
tool. As a part of this process, we examined some existing
educational programming environments. We had initially
contemplated writing ours as a preprocessor or a dynamic and
interactive part of an editor. Later, we considered implementing
it as a post-compiler designed to translate cryptic compiler
messages into comments that introductory students could more
easily comprehend. We finally decided to write our tool as a
pre-compiler, a program to be run before compilation.
Phase 3: Implementation and Evaluation
We then wrote code to implement our program. After
developing a working version, we evaluated it using our own
test suite, with the eventual intention of having a Java class use
it as well.

2 List of Common Java Errors
We started by collecting a list of Java programming errors based
on those reported by the teaching assistants. Next, we contacted
computer science professors from 58 schools listed in the US
News and World Report’s Top 50 Liberal Arts Colleges for
2002 and members of the Special Interest Group on Computer

Science Education (SIGCSE) of the Association for Computing
Machinery. We asked the teachers what they felt were the five
most commonly made programming errors by introductory Java
students, as well as what were the three hardest programming
errors to find and/or fix given the compiler messages. Finally
we collected data from students enrolled in introductory
undergraduate Java courses.
After collecting the survey data, we combined the information
provided by faculty and students and divided it into three
general categories: syntax errors, semantic errors, and logic
errors. Syntax errors refer to mistakes in the spelling,
punctuation and order of words in the program. Frequently,
syntax errors render a program incomprehensible to compilers
and are thus easily identified. While compilers often detect the
obvious syntax errors, their error messages do not necessarily
point the students in the right direction needed to fix the code.
Semantic errors deal with the meaning of the code. In particular,
we identified errors that are likely to ensue from a mistaken idea
of how the language interprets certain instructions. Most of these
types of errors are specific to Java and similar languages but
occur on a more abstract level than the syntax errors. Logic
errors are often the most general errors. We included here those
errors that tend to arise from fallacious thinking by the
programmer rather than from language peculiarities, although
some may manifest themselves via improper syntax or
semantics.
Disagreement on the correct category for a given error is, of
course, possible. In fact, several of the errors in our list seem to
belong in more than one category—sometimes in all three. We
attempted to separate them based more on the thought process of
an introductory Java programmer than on that of a compiler.
This distinction enabled us to approach errors from the user’s
point of view, and consequently to provide meaningful error
messages.
The next step was figuring out which errors we wanted our
program to consider. There were some errors that didn’t need to
be included because we felt that the compiler our students would
be using (CodeWarrior) satisfactorily identified the error in a
way that the student would be able to fix it. There were other
errors (mostly from the surveys and questionnaires) that we
chose not to include because they dealt with Java concepts that
were too complex or too compiler-specific and therefore didn’t
apply to our introductory students. The other errors that we
didn’t include were errors that we either did not understand, or
that we understood but could not implement (due to time
constraints, and the programming backgrounds of the students
writing the pre-compiler). Further errors included in this
category were ones that we simply could not check for because
they were run-time errors, not compile-time errors.
The original list contained 62 reported errors. Of these, 20 were
identified as those we felt were essential to the educational
aspect of our project. These are listed below.
Syntax Errors
1. = versus ==
Confusing the assignment operator (=) with the comparison
operator (==). This can lead to inadvertent reassignment in
conditional expressions.
2. == versus .equals (faulty string comparisons)

Use of == instead of .equals to compare strings. While .equals
compares the values of two strings, == compares only their
memory locations.
3. mismatching, miscounting and/or misuse of { }, [], (), “ ”,

and ‘ ’
Unbalanced parentheses, brackets, square brackets and quotation
marks, or using these different symbols interchangeably.
4. && vs. & and || vs. |
Confusing “short-circuit” evaluators (&& and ||) with
conventional logical operators (& and |). Depending on the
value of the first condition, “short-circuit” evaluators may
ignore the second condition. This can cause problems if the user
relies on the second condition being evaluated.
5. incorrect semi-colon after an if selection structure before

the if statement or after the for or while repetition structure
before the respective for or while loop

Inserting a semi-colon after the parentheses defining if, for, or
while conditions results in the program’s doing nothing when
the if condition is true, or for the duration of the for or while
loop. This is valid code but generally undesirable and often
inadvertently done by beginning programmers.
6. wrong separators in for loops (using commas instead of

semi-colons)
Separating the initialization, testing and update clauses of a for
structure with commas or other punctuation in place of semi-
colons.
7. an if followed by a bracket instead of by a parenthesis
Inserting the condition of an if statement within brackets instead
of parentheses.
8. using keywords as method names or variable names
There are 50 keywords in Java that cannot be used outside of
their given purpose. This means that programmer-defined
functions and new variables cannot have keywords as their
names. Note: It is possible to use the same words in code
because Java is case-sensitive. However, this is not
recommended as it decreases readability.
9. invoking methods with wrong arguments
The types of the arguments in a method call must match the
types of the arguments in that method’s definition.
10. forgetting parentheses after method call
When a method is called, it is always followed by parentheses,
sometimes with arguments in them.
11. incorrect semicolon at the end of a method header
There should never be a semicolon at the end of a method
header (the first line of a method definition).
12. leaving a space after a period when calling a specific

method
There should never be a space after a period, excluding, of
course, comments and strings.
13. >= and =<
The equal sign in a greater than or equal (or less than or equal)
comparison operator always follows the greater than sign (or
less than sign).
Semantic Errors
1. invoking class method on object

A common error is trying to invoke a method that belongs to a
class on a variable or an object directly. The concept of having a
method executed usually is perceived as having to perform it
directly on the variables or objects that it needs to be applied.
Since Java has a complicated object hierarchy, one can not
invoke a class method on an object directly, rather this is done
by giving the object or variable type first before the “.” operator.
Logic Errors
1. improper casting
This problem occurs when a variable is declared rather than cast
(i.e. the casting parentheses are missing). One possible result
may involve truncation of important data. An error of this type
can also occur as a result of integer division. Introductory
students tend to believe that numbers are just numbers and fail
to comprehend the differences and data type necessities between
int and float, for example.
2. invoking a non-void method in a statement that requires a

return value
A method that is supposed to return a variable of some type (i.e.
it must be made equal to a variable of the return type) is instead
called as a void method or as a statement. If this mistake is
made, the value returned by the method is lost since it is not
stored anywhere.
3. flow reaches end of non-void method
A non-void method is supposed to return a value of some type,
but the return statement is missing due to misunderstanding
about the role or type of the method or just forgetfulness.
4. methods with parameters: confusion between declaring

parameters of a method and passing parameters in a method
invocation

When a method is defined, the parameter types need to be
declared. However, in a method invocation the types of the
variables passed are not given, only the variable names. There
exists a confusion between passing parameters, declaring them,
and identifying them in the method’s definition.
5. incompatibility between the declared return type of a

method and in its invocation
A non-void method that is supposed to return a value of a
particular data type but the variable that will receive the return
value is of an incompatible type.
6. class declared abstract because of missing function
A class that implements some interface but is missing one of the
major methods that the interface must define and support.

3 Implementation of the Educational Tool
We examined existing tools such as TA Online[1],
DrScheme[2], and BlueJ[3], and drew ideas and inspiration from
these when deciding how to write our educational tool and in
selecting what goals to focus on.
Of the tools we examined, none were suitable for our needs. TA
Online provides a catalog of over 100 commonly made Java
mistakes, but it is meant to be used as a reference and does not
interact with the students’ code. DrScheme is a highly
interactive environment that highlights erroneous code, but is
implemented for the Scheme language. Our resulting tool
eventually focused on many of the same problems with the Java
language as the DrScheme tool did, as much as there exists

correspondence between these vastly different languages. BlueJ
is also an interactive tool, and it is intended for use with Java,
but we found that it creates some distance between the student
programmer and their code. For example, there is no need to
declare a main function for every program because it is
generated by one of the BlueJ template classes. While this may
save hand-waving and explanations like “just write it and you
will understand it later,” in the early weeks of a course, it may
cause students to be unaware of the need for such functions, and
create a dependency that could later result in programming
difficulties. Since a lot of code is generated for the student, we
felt that they may even need to re-learn some Java basics when a
regular compiler is used.
Our tool differs from the ones we examined because it
specifically does not eliminate the need for understandable
compiler error messages; rather, our tool enhances the functions
of a compiler. The intention was to create a helpful interactive
tool that would do a better job generating error messages than
existing compilers and also provide suggestions on how to fix
the code. Our tool is targeted for use during the beginning
process of learning programming and we believe that the need
for students to use it should decline as they become more
proficient with Java and gain a better understanding of the
essential programming concepts.
Once the final list of errors our program would consider was
developed, we began implementing the code. We decided to call
the program “Expresso” (misspelling intentional) and we wrote
it in C++ as a multiple-pass pre-processor. The first pass inputs
the programmer’s file and removes comments, while keeping
track of line numbers, and storing the resulting characters in a
vector. The second pass removes white space and tokenizes the
file, storing the result as a vector of words. Words were
identified using punctuation and white space as delimiters. The
final pass detects the mistakes, printing out an error message
when appropriate.
We created a test suite of short programs in order to exercise the
individual errors that Expresso could identify. This test suite
can be useful, beyond the debugging process for our Expresso
project, as example code for students to help them understand
the types of errors they are making. This could be presented by
the teacher or TA in a classroom setting, or individually when
working with a student who is having difficulty programming.
Included (at the end of this article) is an example Java program,
combining a number of different types of errors, that was used to
demonstrate the Expresso code. The output generated by
Expresso is also shown. Note that error messages do not all
appear in sequential line number order, due to the multi-pass
process.

4 Conclusions and Future of the Project
We believe that the Expresso tool will be useful for students in
introductory Java programming classes. Additional helpful
materials generated by our project included the list of common
Java programming errors and the test suite. The error messages
and analysis could be adapted for use with other similar
languages, such as C and C++.
Future work on this project includes an assessment of Expresso
in an actual classroom environment, by using it in conjunction
with Java courses on our campus. Feedback from students and
professors will provide insight as to whether it is an effective
tool, and also how it might be improved. It will be interesting to

observe whether students’ programming skills change over time
with the use of this tool. We would also like to combine it with
an exsiting Integrated Development Environment in order to
facilitate its use.

5 Acknowledgements
This project was funded by the Collaborative Research
Experience for Women, part of the Computer Research
Association. Thanks also to Bryn Mawr College Computer
Science Division Chair, Deepak Kumar for assistance in
obtaining this grant.

References
[1] TA Online: Common Java Compiler Errors, Dept. of

Computer Science, University of Arizona, Feb. 2002.
http://www.cs.arizona.edu/people/teena/ta_online/

[2] PLT Scheme: Software: DrScheme Home Page, Jan. 2002.
http://www.plt-scheme.org/software/drscheme/

[3] Kolling, Michael, The BlueJ Tutorial, Jan. 2002.
http://www.bluej.org/tutorial/tutorial.pdf

Sample program containing Java errors:

import java.awt.*;
import java.applet.*;
import java.awt.event.*;
public class SampleRun extends Applet implements
ActionListener {
 Label sampleLabel = new Label("Sample Label",
Label.LEFT);

Panel samplePanel = new Panel();
public void init();{

 samplePanel.setLayout(new
FlowLayout(FlowLayout.LEFT));
 samplePanel.add(sampleLabel);
 add(samplePanel);
 repaint();
 }

public void paint(Graphics g){
 char bear = 'p';
 String cheese = "appleSauce";
 computeSum(cheese, bear);
 }

public int computeSum(int apple, int sauce){

 int appleSauce;
 if (apple = sauce){
 appleSauce= apple + sauce;
 }
 else if (apple > sauce);{
 appleSauce == apple - sauce;
 }
 else{
 appleSauce = 49;
 }
 return appleSauce;
 }
}

Output of Expresso run on sample program:

